

ADVANCED CATALYSTS FOR DIRECT METHANOL FUEL CELLS

Jay Whitacre and S. R.Narayanan Jet Propulsion Laboratory Contract: DE-

DoE Hydrogen Fuel Cells and Infrastructure Technology Program Review, Philadelphia, PA May 25-27, 2004

Program Objectives

Overall Objective:

 Develop catalysts for direct methanol fuel cells with substantially reduced amounts of noble metal loading for direct methanol fuel cells

Specific objectives:

- ·Reduce noble metal loading below 0.5 mg/cm²
- ·Develop non-noble metal anode catalysts

Budget

- Total FY04 funding: \$100K
- No sub-contracts

Technical Barriers and Challenges

Overall challenge for consumer electronics

- Target of \$ 5/Watt and a system power density of 30 W/kg by 2006
- Reduction in catalyst and stack materials cost and increase of performance

Specific Technical Challenges and Barriers:

- · Non-noble metals corrode in acidic media
- Catalyst discovery process is time intensive
- Wet chemical methods of preparation are inherently limited in creating new compositions
- Need methods which will be easy to implement for manufacturing
- · The rationale for catalyst design is still largely empirical

Non-Noble Metal Thin Film Catalyst | Motivation | layers |

- Identifying alternates to precious metal catalysts
- Developing noble metal and non-noble metal combinations to reduce precious metal loading and enhance activity

Approach

- Take advantage of sputter-deposition to identify a corrosion resistant non-noble metal system
 - non-equilibrium phases, unique nanophase structure, morphology and electronic properties.
- ·Ni/Zr system as proof-of-concept
- Characterization:
 - ·Corrosion studies in sulfuric acid, XRD, SEM
 - ·Fuel Cell studies with Ni-Zr/Pt-Ru catalyst layers

Approach

Overall Approach:

Develop catalysts with non-noble metal diluents that will be corrosion resistant and provide enhanced catalytic activity.

SpecificApproach

- Focus on Pt/Ru/Ni/Zr system that has been shown to be corrosion resistant and catalytically active.
- Deposit ultra thin (<10 nm) nanophase catalyst layers by sputterdeposition
- Develop combinatorial approach to rapidly deposit samples of various compositions
- Develop rapid parallel analyses techniques to determine activity
- Understand analytical results with theoretical constructs to extend field of fuel cell catalysis
- Evaluate selected materials in actual cells to determine performance

Tasks and Schedule

<u>Task</u> <u>Completion date</u>

Screening of non-noble metal systems: 02/28/04

Preparation of combinatorial samples: 04/30/04

High throughput evaluation of properties: 06/30/04

Characterization in full cells 09/30/04

Phase II (proposed)

Demonstration of scaled up version of catalysts and membrane electrode assemblies and demonstration in stacks.

Accomplishments

- Combinatorial sputter-deposition technique developed
- Combinatorial electrode sample evaluation technique developed and tested
- Pt/Ru/Ni/Zr
 catalysts samples
 have been tested

- •36-electrode array: Ti/Au patterned on 5x5" glass
- 100-150 Å Catalyst layers sputtered onto squares
- Physical mask used

System in use 1 M H2SO4/1M Methanol solution. Gold springloaded pin contacts used for quick set-up

Qualification of Combinatorial Test Station

Cyclic Voltammetry: 5mV/s in 1M methanol, 1M sulfuric acid at about

Good agreement between single potentiostat and multi-channel polarization scan Cyclic Voltammetry: 5 mV/s in 1M methanol, 1M sulfuric acid at about

Different electrode performances well resolved in multichannel polarization scans

Results of Parallel Polarization Scans

36 Cyclic voltammograms can be collected in parallel

Mapping the Performance of Various catalysts

Potentiostatic Data: 0.45 Vs NHE after 300 Seconds

Cell Current (mA/cm²) as a function of composition

- Each grid intesection is a different test cell
- Each location is a different composition
- Plotting steady state potetiostatic current allows for "sweet spot" compositions to be identified
- Trends can be easily visualized
- Best cell in this case:
 #9, (Pt/Ru/Ni/Zr,
 ~70% Pt)

JPL Effect of Temperature on Catalytic Activity

Effect of temperature varies with composition Activation energy and composition can be correlated to understand factors affecting catalysis.

Comparison of Pt/Ru/Ni/Zr with Pt/Ru

- Increase in performance observed using Pt/Ru/Ni/Zr over Pt/Ru
- · Preliminary result other combinations possibly more catalytic

Compositional Analysis

Rutherford Backscattering Spectroscopy Energy Dispersive X-ray Analysis

RBS Full Compositional Analysis

- Accurate fitting possible
- True quantitative compositional analysis
- Significant compsitional variation across wafer
- Need to examine lectrochemically

Crystalline Structure Of Pt/Ru/Ni/Zr Materials

- Thicker films (>100 nm²) studied using traditional x-ray diffraction
 - Solid state solution found from samples #1-5 (see previous slide for compositions)
- · 10 nm thick films to be evaluated at SSRL

Collaborations

All unfunded:

- SSRL for X-ray Scattering Data
- Univ.Southern California for XPS data

Response to Reviewer's comments

Insert here later

Plans

Remainder of FYO4

- Complete characterization of Pt/Ru/Ni/Zr compositions
- · Verify performance in full cells

FY 05 (Proposed)

- Develop novel fundamental rationale for catalyst design based on wealth of combinatorial data in collaboration with Caltech.
- Extend investigation to new compositions involving cobalt
- Scale up and demonstrate in large MEAs and stacks for durability testing